

(12) United States Patent

Chaffee

(10) **Patent No.:**

US 9,279,510 B2

(45) Date of Patent:

*Mar. 8, 2016

(54) VALVE WITH ELECTROMECHANICAL DEVICE FOR ACTUATING THE VALVE

(71) Applicant: Robert B. Chaffee, Portland, ME (US)

Inventor: Robert B. Chaffee, Portland, ME (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35

U.S.C. 154(b) by 270 days.

This patent is subject to a terminal dis-

claimer.

(21) Appl. No.: 13/859,426

(22)Filed: Apr. 9, 2013

(65)**Prior Publication Data**

> US 2013/0220430 A1 Aug. 29, 2013

Related U.S. Application Data

(60) Continuation of application No. 12/684,216, filed on Jan. 8, 2010, now Pat. No. 8,413,674, which is a division of application No. 10/430,040, filed on May 5, 2003, now Pat. No. 7,644,724, which is a

(Continued)

(51) Int. Cl. F16K 11/18 F16K 15/20

(2006.01)(2006.01)

(Continued)

(52) U.S. Cl.

CPC F16K 15/202 (2013.01); A47C 27/082 (2013.01); *A61G* 7/05776 (2013.01);

(Continued)

Field of Classification Search

CPC ... F16K 17/168; F16K 15/181; A47C 27/082; Y10T 137/87056

USPC 137/223, 512, 522, 523, 527, 596.17; 251/82, 129.15, 298; 5/706, 713

See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

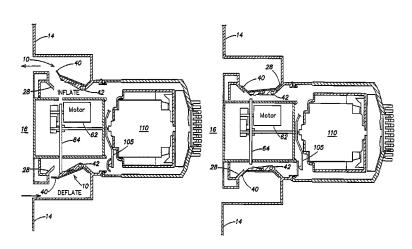
388,037 A 8/1888 Hargin 5/1899 MacSpadden 625,114 A (Continued)

FOREIGN PATENT DOCUMENTS

2037006 U 5/1989 CNCN1274266 A 11/2000 (Continued)

OTHER PUBLICATIONS

An English translation of a First Notification of Office Action from the Intellectual Property Office of the People's of China, mailed Aug. 6, 2004.

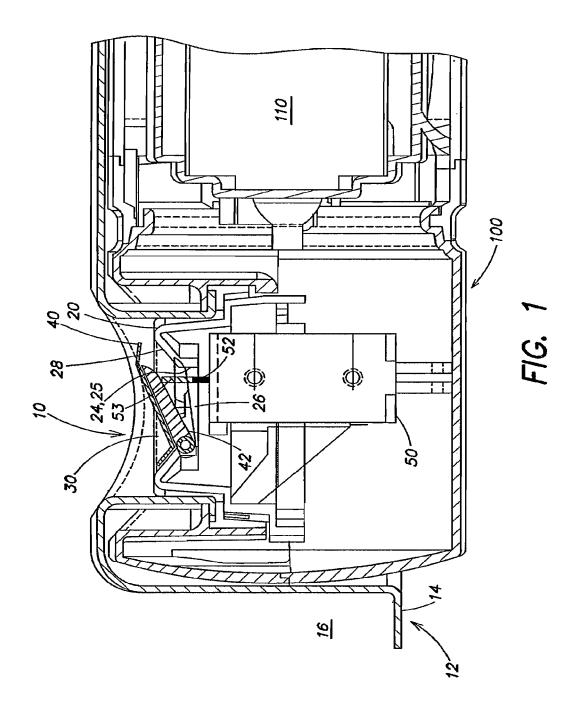

(Continued)

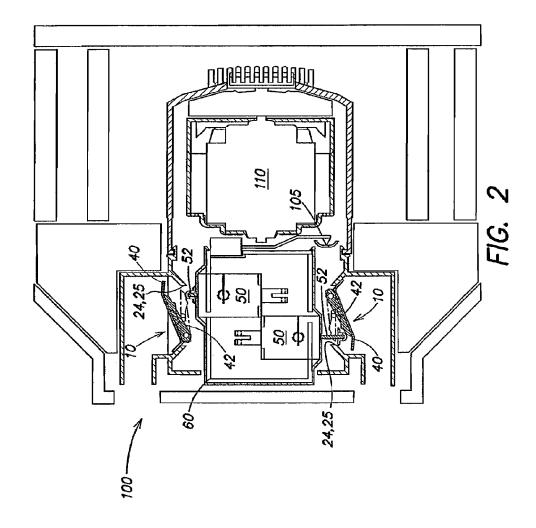
Primary Examiner — R. K. Arundale (74) Attorney, Agent, or Firm — Lando & Anastasi, LLP

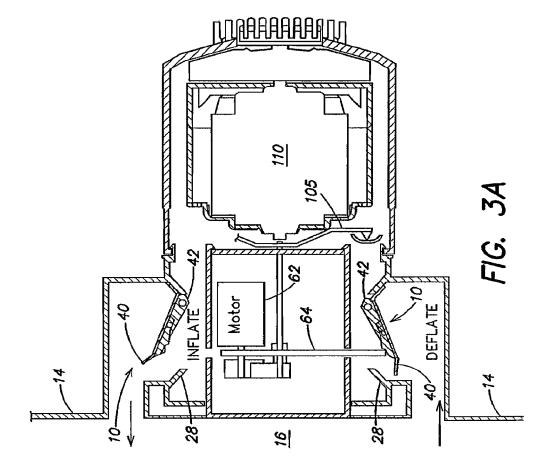
ABSTRACT (57)

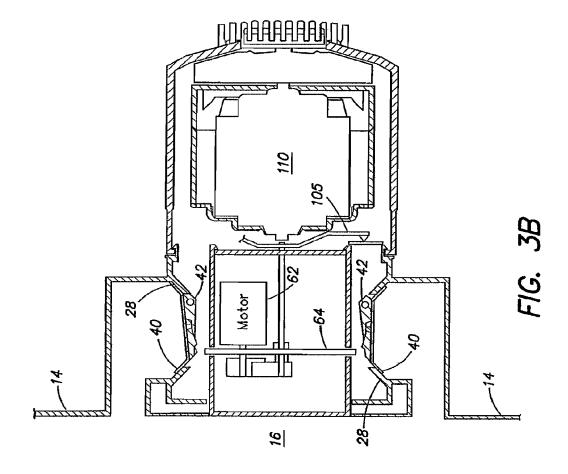
The invention relates to an assembly comprising an electromechanical device and a self-sealing valve, and in particular, to any inflatable device that includes the assembly. In one embodiment, the assembly comprises a valve housing defining an opening through which fluid can be provided to the inflatable device, a flexible diaphragm assembly that is configured to self-seal the opening with sufficient fluid pressure in the inflatable device and to open under sufficient fluid pressure from a fluid moving device, to provide fluid through the opening to and seal the inflatable device. The assembly further comprises an electromechanical device including an actuating arm, having a first position in which the actuating arm urges open the self-sealing valve and a second position in which the actuating arm does not act upon the self-sealing valve, so as to regulate an amount of fluid within the inflatable device. With this arrangement, a small, low power, low duty cycle electromechanical device can be used.

19 Claims, 5 Drawing Sheets

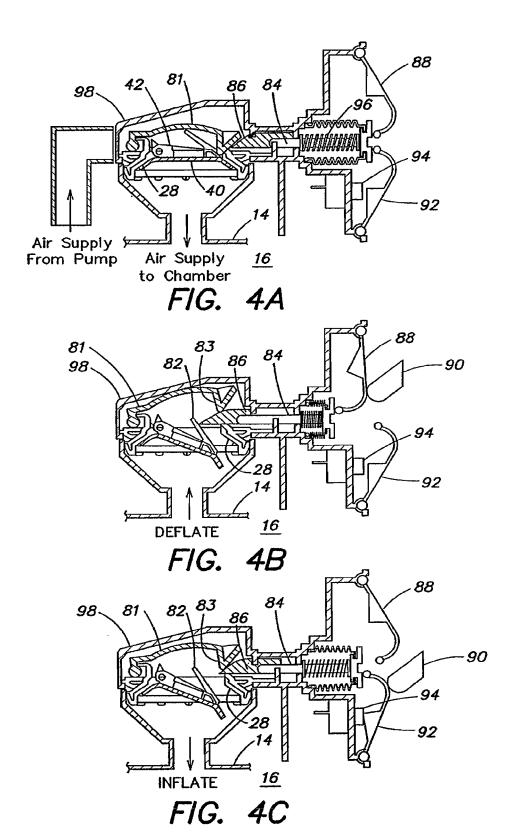

	Related U.S. Application Data	3,142,850 A	8/1964	De Boer
	continuation-in-part of application No. 09/859,706,	3,155,991 A 3,164,151 A		Dunham Vere Nicoll
	filed on May 17, 2001, now Pat. No. 7,039,972.	3,208,721 A		McHugh
	• • • • • • • • • • • • • • • • • • • •	3,274,624 A	9/1966	Noerdinger
(60)	Provisional application No. 60/377,798, filed on May	3,367,819 A 3,403,696 A		Schlag Pynchon
	3, 2002, provisional application No. 60/204,836, filed	3,424,151 A	1/1969	Ericson
	on May 17, 2000, provisional application No. 60/280,	3,459,363 A	8/1969	Miller
	040, filed on Mar. 30, 2001.	3,462,775 A 3,505,695 A		Markwitz et al. Bishaf et al.
(51)	Int. Cl.	3,511,472 A		Zimmerman
(01)	A47C 27/08 (2006.01)	3,561,435 A		Nicholson
	A61G 7/057 (2006.01)	3,563,676 A D220,953 S		Coovert et al. Des Pres
(52)	U.S. Cl.	3,610,235 A	10/1971	Sivash
	CPC Y10T137/0324 (2015.04); Y10T 137/3584	3,653,084 A 3,665,958 A		Hartman Dunkelis
	(2015.04); <i>Y10T 137/7838</i> (2015.04); <i>Y10T</i>	3,667,075 A		Ballard et al.
	137/7876 (2015.04); Y10T 137/7898 (2015.04);	3,667,625 A	6/1972	
	<i>Y10T 137/87056</i> (2015.04); <i>Y10T 137/87217</i> (2015.04); <i>Y10T 137/88046</i> (2015.04)	3,719,401 A 3,755,832 A		Peruglia Bennett
	(2013.04), 1101 137/00040 (2013.04)	3,762,404 A	10/1973	Sakita
(56)	References Cited			Yuen et al. Andreasson
	LLO DATENTE DOCLINAENTO	3,785,395 A 3,790,975 A		Philipp et al.
	U.S. PATENT DOCUMENTS	3,798,686 A	3/1974	Gaiser
	633,968 A 9/1899 Swartzwelder	3,813,716 A 3,829,918 A		Francis Stamberger
	679,519 A 7/1901 Smith	3,831,628 A		Kintner et al.
	827,823 A 8/1906 Starr 847,758 A 3/1907 Frye			Morrison et al.
	918,391 A 4/1909 Taarud	3,864,766 A 3,877,092 A	2/1975 4/1975	Prete, Jr. Gaiser
	934,465 A 9/1909 Rust 1,185,684 A 6/1916 Kraft et al.	3,898,703 A	8/1975	Stamberger
	1,263,599 A 4/1918 Poole	3,899,797 A 3,995,653 A	8/1975	Gunst Mackal et al.
	1,282,980 A 10/1918 Takach	4,025,974 A		Lea et al.
	1,361,453 A 12/1920 Frey 1,451,136 A 4/1923 Allnut	4,068,334 A		Randall
	1,576,211 A 3/1926 O'Kane	4,080,105 A 4,091,482 A		Connell Malcolm
	1,944,466 A 1/1934 Rubin 2,028,060 A 1/1936 Gilbert	4,099,773 A	7/1978	Chang
	2,028,060 A 1/1936 Gilbert 2,064,695 A 12/1936 Sipe	4,146,069 A		Angarola et al. Angarola et al.
	2,112,641 A 3/1938 Wheaton	4,146,070 A 4,149,285 A		Stanton
	2,168,774 A 8/1939 Hurlburt 2,285,324 A 6/1942 Bennett	4,168,063 A	9/1979	Rowland
	2,288,889 A 7/1942 Costello		10/1979	Darling Robbins et al.
	2,369,736 A 2/1945 Hurt	D253,983 S		McRight
	2,372,218 A 3/1945 Manson et al. 2,415,150 A 2/1947 Stein	4,213,745 A		Roberts
	2,434,641 A 1/1948 Burns	4,225,989 A 4,266,298 A		Corbett et al. Graziano
	2,456,689 A 12/1948 Dickey et al. 2,459,689 A 1/1949 Dickey et al.	4,273,310 A	6/1981	Ginzler
	2,482,198 A 9/1949 Melichar	4,300,759 A 4,317,244 A	3/1981	Caplan Balfour-Richie
	2,549,597 A 4/1951 Harris	4,348,779 A	9/1982	
	2,565,406 A 8/1951 Popovich 2,575,764 A 11/1951 Morner	4,371,999 A	2/1983	
	2,604,641 A 7/1952 Reed	4,382,306 A 4,394,784 A *		Lickert Swenson et al 5/710
	D167,871 S 9/1952 Vega 2,614,272 A 10/1952 Morner	4,405,129 A	9/1983	Stuckey
	2,672,628 A 3/1954 Spanel	4,489,452 A 4,521,166 A	12/1984	Lickert Phillips
	2,701,579 A 2/1955 Hasselquist	4,521,100 A 4,594,743 A		Owen et al.
	2,741,780 A 4/1956 Kimbrig 2,767,735 A 10/1956 Darling	4,644,597 A		Walker
	2,803,527 A 8/1957 Lundahl	4,678,014 A 4,678,410 A	7/1987	Owen et al. Kullen
	2,823,668 A 2/1958 Van Court et al. 2.842.783 A 7/1958 Druck	4,692,091 A	9/1987	Ritenour
	2,842,783 A 7/1958 Druck 2,853,720 A 9/1958 Friedlander			Ford et al.
	2,949,927 A 8/1960 Mackal	4,734,017 A 4,768,247 A	3/1988 9/1988	
	2,990,070 A 6/1961 Cushman 3,008,214 A 11/1961 Foster et al.	4,807,554 A	2/1989	Chi-Hung
	3,026,909 A 3/1962 Boteler	4,829,614 A		Harper Walker
	3,042,941 A 7/1962 Marcus	4,829,616 A 4,862,533 A		Walker Adams, III
	3,068,494 A 12/1962 Pinkwater 3,086,698 A 4/1963 Goldstein	4,890,344 A		Walker
	3,095,901 A 7/1963 Larson et al.	4,891,855 A		Cheng-Chung
	3,099,386 A 7/1963 Pieper 3,112,502 A 12/1963 Forsburg	4,896,389 A 4,897,890 A		Chamberland Walker
	3,112,502 A 12/1963 Forsburg 3,123,336 A 3/1964 Price	4,905,332 A	3/1990	
	3,128,480 A 4/1964 Lineback	4,911,405 A		Weissgerber


US 9,279,510 B2 Page 3


(56)			Referen	ces Cited	5,960,495			Hsu et al.
		TIC F	ATENT	DOCUMENTO	5,962,159 5,963,997			Satou et al.
		U.S. F	ALENT	DOCUMENTS	5,963,997			Hagopian Garman et al.
	4.049.003	4	9/1000	Vannan at al	6,008,598			Luff et al.
	4,948,092 4,964,183			Kasper et al. LaForce, Jr.	6,032,080			Brisbane et al.
	4,970,741		11/1990		6,037,723			Shafer et al.
	4,977,633		12/1990		6,047,425			Khazaal
	4,982,466			Higgins et al.	6,073,289			Bolden et al.
	4,986,738	A	1/1991	Kawasaki et al.	6,076,214			Klimenko
	4,990,060			Cheng-Chung	6,085,555			Wu et al.
	5,025,894			Yamasaki	6,098,000 6,099,248			Long et al. Mumm et al.
	5,037,062			Neuhaus	6,102,759			Klimenko
	5,040,555		8/1991		6,108,844			Kraft et al.
	5,044,030 5,051,060			Balaton Fleischmann et al.	6,129,524			Woollenweber et al.
	5,052,894			Rimington	6,131,219		10/2000	Roberts
	5,060,324			Marinberg et al.	6,148,461	A	11/2000	Cook et al.
	5,068,933		12/1991		6,152,530			Hsu et al.
	5,071,378		12/1991		6,164,314			Saputo et al.
	5,079,785	A	1/1992	Garcia	6,189,168			Graebe
	5,085,214		2/1992		6,206,654			Cassidy
	5,102,365		4/1992		D441,586 6,224,444		5/2001	Klimenko
	5,117,517		6/1992		6,237,621			Chaffee
	D328,324		7/1992 9/1992		6,237,653			Chaffee
	5,144,708 5,163,196			Graebe et al.	6,240,584			Perez et al.
	5,170,522		12/1992		D446,284			Chaffee
	5,178,523			Cheng-Chung	D448,229			Su et al.
	5,186,667		2/1993		6,283,056			Tchaikovsky
	5,203,808	A	4/1993	Ide	6,287,095			Saputo et al.
	D335,999			Van Driessche	6,296,459			Saputo et al.
	5,216,769		6/1993		6,302,145 6,332,760		12/2001	Ellis et al.
	5,226,184		7/1993		6,397,417			Switlik
	5,243,722 5,249,319		10/1993	Gusakov	6,397,419			Mechache
	D341,983		12/1993		6,439,264			Ellis et al.
	5,267,363		12/1993		6,446,289	B1	9/2002	Su et al.
	D343,980			Torchia	D464,225			Boso et al.
	5,288,286	A	2/1994	Davis	6,483,264			Shafer et al.
	5,367,726		11/1994		6,487,737			Futagami
	5,406,661		4/1995		6,530,751 6,543,073		4/2003	Song et al.
	5,423,094			Arsenault et al.	6,550,086	B2	4/2003	
	5,450,858 5,474,361	Α Δ	12/1005	Zablotsky et al. Hwang et al.	6,565,315	B1		Bertels et al.
	5,491,854	A	2/1996		6,568,011	B2	5/2003	Fisher et al.
	5,493,742			Klearman	6,571,412		6/2003	
	5,494,258		2/1996	Weissgerber et al.	6,651,283			Cook et al.
	5,494,418			Moriya et al.	6,659,737			Bader et al.
	5,503,618	A	4/1996		6,679,686 6,701,559		1/2004 3/2004	Boso et al.
	5,509,154			Shafer et al.	6,709,246		3/2004	Boyd
	5,511,942 5,535,849		4/1996 7/1996		6,715,172			Leventhal et al.
	5,581,304		12/1996		6,719,401			Takahashi
	5,588,811	Ā	12/1996	Price	6,722,306		4/2004	Wang
	5,598,593		2/1997		6,733,254		5/2004	
	5,606,756	A	3/1997	Price	6,793,469			Chung
	5,619,764		4/1997		6,836,914 6,955,527		1/2005 10/2005	
	5,638,565		6/1997		7,025,576			Chaffee
	5,652,484			Shafer et al.	7,029,972			Chaffee
	5,689,845 5,699,569		12/1997	Sobieralski Schwarz-Zohrer	7,120,955		10/2006	
	D391,435			Song et al.	7,127,762		10/2006	
	5,727,270		3/1998	Cope et al.	7,152,265		12/2006	
	5,745,942		5/1998	Wilkerson	7,198,076		4/2007	
	5,746,873		5/1998	Graf	7,246,393			Westendorf et al.
	5,839,139		11/1998		7,246,394 7,284,291		7/2007	
	5,845,352		12/1998	Matsler et al.	7,299,513		10/2007	Barrett et al.
	5,857,841 D405,636		2/1999	Kobayashi et al. Stewart	7,306,694		12/2007	
	5,890,882		4/1999	Feldman	7,313,837		1/2008	
	5,893,609			Schmidt	7,328,472			Chaffee
	5,902,011			Hand et al.	7,334,274		2/2008	
	5,903,941			Shafer et al.	7,475,440			Chaffee
	5,904,172	A	5/1999	Gifft et al.	7,588,425		9/2009	Chung
	5,941,272			Feldman	7,644,724			Chaffee
	5,947,563			Klimenko	7,739,763			Wang et al.
	5,951,111		9/1999	Klimenko	7,788,751		9/2010	Diemer et al.
	D414,976	S	10/1999	Su et al.	8,016,572	B 2	9/2011	Chaffee


(56)	Refere	nces Cited	GB	2198341 A	6/1988
U.S. PATENT DOCUMENTS			GВ JP JP	2378987 A S54-24711 58-53965	2/2003 1/1979 4/1983
8,210,834			JP JP	61-126241 05-063354 B2	6/1986 3/1993
8,225,444		Chaffee	JP	05-003334 B2 05137809 A	6/1993
8,336,143		Lemmer	JP	405137809 A	6/1993
8,434,177		Chaffee	JP	0714273	3/1995
8,684,030		Chaffee	JР	H8-93683	4/1996
2001/0026763 2001/0044969		Chung Chaffee	JP	H11-182439	7/1999
2002/0050010		Shimada	JP	3023725 B2	3/2000
2002/0036016		Smith et al.	JP	2001523322 A	11/2001
2002/0184710		Chaffee	JP	3267013 B2	3/2002
2002/0194678		Chung	WO	9305684 A1	4/1993
2003/0003001		Chaffee	WO	9803810 A1	1/1998
2003/0024050		Boso et al.	WO	0040882 A1	7/2000
2003/0028971	A1 2/2003	Chaffee	WO	0187121 A2	11/2001
2003/0066489	A1 4/2003	Whitehill	WO	03093709 A1	11/2003
2003/0099560		Wang		OTHED DITE	BLICATIONS
2003/0115000		Bodas		OTHERFUL	DEICATIONS
2003/0192123		Chaffee	Imaga of A	ero product—inflatabl	a had. American 2002
2003/0192127		Cook et al.	-	-	
2003/0200611		Chaffee Chaffee	-		g, 2000 Imaginair Incorporated,
2003/0205273 2003/0215340		Chung	Wauconda,	*	4 5 4000 7 1 1 7
2003/0213340		Wang			anual, Dec. 1999, Imaginair Incor-
2004/0089835		Schreiner	-	uconda, IL, USA.	
2004/0107503					nternational Application No. PCT/
2004/0168256		Chaffee		3 mailed Jul. 31, 2002	
2004/0241014	A1 12/2004	Yen	Internationa	ıl Search Report for F	PCT International Application No.
2005/0044634		Wang	PCT/US02/	21756.	
2005/0047923		Li et al.	Internationa	al Search Report for F	PCT International Application No.
2005/0118046		Wang	PCT/US03/	14116.	
2005/0186097 2006/0053561		Wang Metzger et al.	Internationa	al Search Report for F	PCT International Application No.
2006/0123549		Chaffee	PCT/US03/	37230.	
2006/0143832		Chaffee	Internationa	al Search Report from	corresponding International Appli-
2006/0162779		Chaffee	cation No. I	PCT/US01/15834, file	d May 17, 2001.
2006/0253991	A1 11/2006	McClintock	Notification	of the First Office A	ction for Japanese Patent Applica-
2007/0256245		Kammer et al.	tion No. 20	11-27349 mailed Oct.	23, 2012, 5 pages.
2008/0109962		Wang et al.	Patent Exan	nination Report for Ca	anadian Application No. 2,735,313
2008/0229508		Chaffee	dated Apr. 2	23, 2013, 3 pages.	
2009/0049617 2009/0300846		Chaffee Chaffee	Supreme Fa	st-Fill, 2000 Intex Re	ecreation Corpl, Long Beach, CA,
2011/0167564		Chaffee	USA.		
2012/0272456		Lemmer	Final Reject	tion issued May 14, 2	2013 for Japanese Application No.
2014/0053339		Chaffee	2011-02734		1 11
2014/0130261	A1 5/2014	Gumbrecht			Application No. 0611442.8-2313
			dated Jul. 6.		
FOREIGN PATENT DOCUMENTS				'	Report for European Patent Appli-
				•	1 Feb. 7, 2013, 5 pages.
	1808122.6	5/1970			for Australian Patent Application
DE	4000629 A1	7/1990		2594, dated May 16,	
DE	4413445 C2	2/1996			om PCT Application No. PCT/
DE FR	29721150 U1 2721581 A3	2/1998 12/1995		9678 mailed Jun. 3, 20	
GB	903557 A	8/1962			
GB GB	1381952 A	1/1975	* cited by	examiner	
-		-			

^{*} cited by examiner



Mar. 8, 2016

VALVE WITH ELECTROMECHANICAL DEVICE FOR ACTUATING THE VALVE

RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 12/684,216, which was filed on Jan. 8, 2010 and which issued on Apr. 9, 2013 as U.S. Pat. No. 8,413,674. U.S. application Ser. No. 12/684,216 is a divisional of, and claims priority under 35 U.S.C. §120 and §121 to, U.S. patent application Ser. No. 10/430,040, filed May 5, 2003, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application Ser. No. 60/377,798, filed on May 3, 2002, which also claims priority under 35 U.S.C. §120 as a continuation-inpart (CIP) to U.S. application Ser. No. 09/859,706, filed May 17, 2001, which claims priority under 35 U.S.C. §119(e) to U.S. Application No. 60/204,836, filed May 17, 2000 and to U.S. Application No. 60/280,040, filed Mar. 30, 2001, each of the preceding are incorporated herein by reference in their entirety.

FIELD OF INVENTION

This invention relates to a valve comprising an electromechanical device and, in particular, to a self-sealing valve used 25 with an electromechanical device to bias open the valve to regulate an amount of fluid in an inflatable device.

BACKGROUND OF INVENTION

Inflatable devices are used in a variety of contexts where buoyancy or a cushioned support is needed, where space is limited, or portability is desired. For example, inflatable mattresses, cushions and other body supports are used for applications such as camping, hospital bedding, and both occasional and everyday bedding in the home. Such inflatable devices have the additional advantage that the degree of inflation of the support can be adjusted to provide even support of an irregular object, such as a person. Other examples of inflatable devices include boats, rafts and other devices for use in the water where use of an inflatable device may benefit support, health, comfort, and safety.

Inflatable devices typically include valves for inflation and deflation of the devices. Valves used with inflatable devices may include self-sealing valves such as those described in 45 U.S. Pat. No. 6,237,621, which is hereby incorporated by reference in its entirety. Inflatable devices may also include mechanisms, such as manually or electrically powered pumps, to aid in inflating and/or deflating the devices.

SUMMARY OF INVENTION

One embodiment of the invention comprises a valve and electromechanical device assembly, comprising a self-sealing valve, a flexible diaphragm assembly and an electromechanical device. The self-sealing valve comprises a housing having a wall defining an opening through which a fluid is provided and also defining a valve seat. The flexible diaphragm assembly positions the flexible diaphragm adjacent the opening and the valve seat, is configured to move at least a portion of the flexible diaphragm at least partially away from the valve seat under bias of a fluid provided on a first side of the flexible diaphragm assembly and is configured to close and maintain a self-seal against the valve seat under bias of a fluid on a second side of the flexible diaphragm assembly. The 65 electromechanical device comprises an actuator arm having a first position in which the actuator arm acts on the flexible

2

diaphragm assembly to urge the at least the portion of the flexible diaphragm at least partially away from the valve seat so as to open the self-sealing valve, and having a second position in which the actuator arm does not act upon the flexible diaphragm assembly.

With this arrangement, a small, low power, low duty cycle electromechanical device can be used. In addition, a plurality of electromechanical devices including, for example, solenoids and motors can be used in combination with at least one self-sealing valve. Furthermore, the valve and electromechanical device can flexibly be used to provide a plurality of adjustment functions, such as, providing minor inflation/deflation adjustments for comfort control of an inflatable device, as well as substantial inflation or deflation of the inflatable device.

Another embodiment of the invention comprises a method of regulating an amount of fluid within an inflatable device comprising a self-sealing valve and an electromechanical assembly. The method comprises biasing open the self-sealing with sufficient fluid pressure provided from a fluid moving device, so as to provide the fluid through the opening and the self-sealing valve to the inflatable device. The method also comprises biasing the self-sealing valve to a closed position with sufficient pressure from fluid within the inflatable device and in the absence of fluid from the fluid moving device. The method further comprises biasing, with the electromechanical device, the self-sealing valve to at least a partially opened position so as to regulate an amount of fluid within the inflatable device.

BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:

FIG. 1 is a cross-sectional view of one embodiment of a fluid moving device comprising a valve and an electromechanical device of the invention;

FIG. 2 is a cross-sectional view of another embodiment of a fluid moving device comprising two valves and a plurality of actuating devices of the invention;

FIG. 3A is a cross-sectional view of another embodiment of the invention, comprising a fluid moving device, two valves and an actuator device in a first condition;

FIG. 3B illustrates the embodiment of the invention of FIG. 3A in a second condition; and

FIGS. 4A-4C illustrate another embodiment of an assem-50 bly of an actuator in combination with a self-sealing valve of the invention.

DETAILED DESCRIPTION

This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phrase-ology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of "including," "comprising," or "having," "containing", "involving", and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.

As used herein, "inflatable" is to be understood as able to be inflated by any fluid such as, for example, a gas, air, a

liquid, and the like. As used herein, an "inflatable device" comprises at least one fluid impermeable bladder that can be inflated and sealed, and may comprise many shapes, sizes, constructions, and materials.

The invention relates to a self-sealing valve that can be 5 used in conjunction with an electromechanical device to bias open the valve. In particular, in one embodiment, the invention relates to a self-sealing valve that can open under the pressure of a fluid moving device to inflate an inflatable device, and that can close under pressure from fluid within the 10 inflatable device, without any assistance from an electromechanical device. In this embodiment, the electromechanical device is used to bias open the valve to at least partially deflate the inflatable device, for example, to adjust an amount of fluid within the inflatable device, and also to substantially deflate 15 the inflatable device. For example, the self-sealing valve can be opened by the electromechanical device for a short duration to adjust the amount of fluid in the inflatable device, and can be biased open to substantially deflate the inflatable device. In another embodiment, the invention comprises an 20 electromechanical device coupled to a self-sealing valve, wherein the electromechanical device comprises an actuator arm that is not connected to the valve, but instead can be biased into contact with the self-sealing valve to bias open the self-sealing valve. In this embodiment, in the closed position, 25 or any position other than an open position, the electromechanical device and the actuator arm may not be in contact with the self-sealing valve assembly. Another embodiment of the invention comprises an electromechanical device and two valve assemblies, one for each fluid impermeable bladder of 30 an inflatable device comprising at least two fluid impermeable bladders. In this embodiment, the electromechanical device can be used to biased open one self-sealing valve at a time, to adjust an amount of fluid within the fluid impermeable bladder coupled to the respective self-sealing valve, or to 35 substantially deflate the fluid impermeable bladder. Other embodiments of the invention will be described infra.

As will be disclosed herein, some of the advantages of the various embodiments of the invention include substantially reduced power requirements for the electromechanical actuation device and substantially reduced cycles of operation for the electromechanical actuation device, compared with conventional valve and solenoid combinations. Another advantage is that a plurality of electromechanical devices including, for example, solenoids and motors can be used in combination with at least one self-sealing valve. Still another advantage is that the valve and electromechanical device of the invention can flexibly be used to provide a plurality of adjustment functions, such as, providing minor inflation/deflation adjustments for comfort control of an inflatable device, as 50 well as substantial inflation or deflation of the inflatable device.

In contrast, Solenoids have been used in conjunction with valves for inflatable devices. In such inflatable devices, the valves typically employ a spring to maintain the valves in a 55 normally biased closed position. A solenoid is typically provided with the valve and is typically sized and arranged to overcome the force of the spring biasing the valve closed so as to open the valve. Such solenoids are typically center mounted with the diaphragm of the valve. In such arrangements, the force of the spring biasing the valve closed has to be greater than a maximum internal air pressure within an inflatable device, so as to maintain the valve in a closed position when the inflatable device is inflated. Accordingly, the solenoid has to be sized and arranged to provide a force 65 greater than the force provided by the spring in order to open the valve. In addition, since the spring normally biases the

4

valve closed, the solenoid typically has to be energized to open the valve both for the purpose of inflating an inflatable device and also for the purpose of exhausting air from the inflatable device. This arrangement results in a long operating cycle of the solenoid to either inflate the inflatable device or deflate the inflatable device, since the solenoid must be energized for the entire time of inflation or deflation. In addition, the solenoid has to be sized so as to provide enough force to overcome the force provided by the spring maintaining the valve in a closed position, and therefore is typically a large, power consuming, and expensive solenoid device. In addition, this arrangement suffers from the infirmity that the amount of fluid that can be provided to the inflatable device and exhausted from the inflatable device are typically the same, since the valve can typically only be opened to a single position or closed by the solenoid. Further, the solenoid typically restricts the fluid pathway, thus requiring a substantial inflation or deflation time for the inflatable device. For example, Select Comfort makes an inflatable mattress with this typical arrangement that takes on the order of about 10 minutes to inflate. Thus, this arrangement suffers from the infirmity of not being able to control an amount of fluid within the inflatable device in sufficient time frames. In particular, the time to fine tune the level of inflation of an inflatable device by this arrangement is typically too long.

It is to be appreciated that the valve and electromechanical device combination of the invention can be used as an alternative or a replacement to the stand alone valve of an inflatable device. For example, the valve and electromechanical device of the invention can be used within the fluid moving device and valve combination disclosed in U.S. Pat. No. 5,267,363 (hereinafter the "'363 Patent") and U.S. Pat. No. 5,367,726 (hereinafter the "'726"), which are herein expressly incorporated by reference, to inflate and control an amount of fluid within an inflatable mattress. It should also be appreciated that although the valve and electromechanical device combination of the invention is illustrated and can be used to inflate, deflate and control an amount of fluid within generally an inflatable device, the combination can be used with any inflatable device, such as, for example: inflatable furniture, or sporting items such as chairs, mattresses and pillows; inflatable safety devices, such as life preservers, barriers, bumpers, and pads; inflatable medical devices, such as supports, casts, and braces; inflatable luggage devices such as, padding and luggage lining material; inflatable recreational devices, such as swimming aids, floats, tubes, and rings; inflated vehicles and vehicle components, such as boats, rafts, and tires; inflatable support structures, such as buildings, portable enclosures, platforms, ramps, and the like; inflatable body support devices, such as seats, back supports, body pillows, and the like.

It should also be appreciated that any of the valve and electromechanical device combinations of the invention, as disclosed infra, can be used in conjunction with any fluid moving device, such as that disclosed in U.S. Pat. No. 6,237, 653 herein incorporated by reference; that disclosed in pending U.S. patent application Ser. No. 09/859,706, herein incorporated by reference; and that disclosed in pending U.S. patent application Ser. No. 10/113,836 herein incorporated by reference.

It is further to be appreciated that the valve and electromechanical device combination of the invention is typically used over the pressure range anywhere from approximately 0 to 1 pound per square inch (hereinafter "psi"). However, it should also be appreciated that the valve and electromechanical device combination of the invention can be used at any pressure above about 1 psi and at which the valve and electrome-

chanical device still function properly such as, for example, to provide a seal of the inflatable device which can be biased open by the electromechanical device, and that such pressure ranges are within the scope of the invention. It is to be understood that as used herein, a range of approximately 0 to about 5 1 psi is understood to be a low pressure range, a range of approximately 1 to 2 psi is understood to be a medium pressure range, and a range of approximately 2 to 5 psi is understood to be a relatively high pressure range.

Referring now to FIG. 1, there is illustrated a cross-sec- 10 tional view of one embodiment of a valve and electromechanical device combination of the invention. In particular, there is illustrated a fluid moving device 100 that can be at least partially within an inflatable device 12 or coupled to the inflatable device 12 having an outer wall 14 that is a fluid impermeable bladder. In particular, the fluid impermeable bladder 14 separates an exterior of the inflatable device from an interior 16 of the inflatable device. In this embodiment, the valve 10 comprises an outer wall 20 and a valve wall 24 defining a circular opening 26 through which a fluid may be 20 transferred to and from the interior 16 of the inflatable device. The circular opening preferably has a diameter of about 1" or greater. However, it should be appreciated that the diameter can also be less than approximately 1", such as, in the range of $\frac{1}{2}$ " to $\frac{3}{4}$ " so as to be coupled to a tubing having a diameter in 25 this range. The valve also comprises a tapered wall from the opening 26 of diameter 25 to the outer wall 20 of increased diameter 30, to create a tapered valve seat 28. The self-sealing valve also comprises a diaphragm 40 that is generally circular, deformable, flexible, and for this embodiment has a diameter that is less than the larger diameter region 30, and greater than the smaller diameter 25 of opening 26.

However, it should be appreciated that according to the invention, the diaphragm 40 can be of any shape, material, size and construction so long as it provides a sufficient seal of 35 the inflatable device. In the illustrated embodiment, the valve 10 comprises a self-sealing valve, in which the diaphragm 40, in the closed position, mates with the valve seat 28 to seal the opening 26. In one embodiment, a flexible diaphragm assembly comprises diaphragm 40 which is supported by a dia- 40 phragm support 42. In the illustrated embodiment, the diaphragm support 42 is hingedly connected to a wall 24, so that it can be opened and closed about a hinge point connection. However, it should be appreciated that the diaphragm support 42 in combination with the diaphragm 40 of the valve 10, can 45 be any of a plurality of structures that may be self-sealing, such as disclosed in U.S. Pat. No. 6,237,621, herein incorporated by reference. In other words, the flexible diaphragm assembly may be constructed in any manner that allows the diaphragm to open under the influence of fluid provided by 50 the fluid moving device 110, and to close at a suitable fluid pressure within the inflatable device 16, in the absence of fluid from the fluid moving device. It should further be appreciated that the self-sealing valve 10 can comprise many different variations, as known to those of skill in the art such as, for 55 example, a flexible diaphragm without a diaphragm support. Typically, the diaphragm support 42 is constructed from a relatively rigid plastic material, and the diaphragm 40 may be connected to the diaphragm support in any manner that permits the diaphragm 40 to be positioned within the opening 26, 60 and to open from the influence of a fluid provided by the fluid moving device 110 and also from an influence provided by the electromechanical device 50.

Thus, according to one embodiment of the invention, the valve 10 is a self-sealing valve that opens under the influence 65 of a fluid from the fluid moving device 110 to pressurize the inflatable device 16, and that closes to retain fluid within the

6

inflatable device 16 in the absence of such fluid. In this embodiment, the self-seal is accomplished by a fluid pressure within the inflatable device 12 biasing the diaphragm 40 against the valve seat 28.

It is to be appreciated that the electromechanical device 50 may be any device that is capable of biasing the self-sealing valve 10 to an open position. Some examples of electromechanical devices that may be used with the invention include solenoids and electrical motors, such as motors that have at least two positions, which can be arranged to correspond to an open position and a closed position of the self-sealing valve 10. For example, as will be discussed in further detail infra, an electric motor can be used to bias open the self-sealing valve in a first position, and in a second position to allow the self-sealing valve 10 to close. Alternatively, another example is an electric motor comprising a suitable arrangement of gears having at least two positions, that can be adapted with the self-sealing valve to bias open and allow the valve 10 to close

In the embodiment of FIG. 1, the electromechanical device 50 includes an actuator arm 52, that is biased by the electromechanical device 50 to open the valve 10 (as illustrated) by acting on a portion of the valve. As illustrated in FIG. 1, in one embodiment of the invention, the actuator arm 52 is coupled to, is directly connected to, or is a portion of a moving portion of a solenoid 50, which can be energized to bias the actuator arm to open the valve 10, by biasing the diaphragm 40 away from the valve seat 28. It is to be appreciated that the actuator arm 52 may act on any portion of the valve 10, so as to bias the valve 10 open, such as against the diaphragm 40 or against the diaphragm support 42. It is also to be appreciated that according to this embodiment of the invention, there is a reduced force required to bias open the valve 10. Since the diaphragm support 42 is mounted by a hinge point to the frame 20, the actuator arm 52 can act on a portion of the diaphragm 40 or the diaphragm support 42 opposite the hinge point. In particular, the actuator arm 52 acts on a portion of the diaphragm 40 or the diaphragm support 42 remote from the hinge point of the valve 10 to the wall 24. Accordingly, the combination of the solenoid 50 and the self-sealing valve 10 have the advantage that there is less force needed to actuate the valve to the open position at the portion of the valve remote from the hinge point, than at the hinge point. In particular, the further away from the hinge point that the actuator arm contacts the diaphragm 40 or the valve arm 42, the smaller the force that is needed to bias the valve 10 to an open position with the electromechanical device.

According to one embodiment of the invention, the electromechanical device 50 and the actuator arm 52 are energized to move either of the diaphragm 40 and the support arm 42 away from the valve seat 28, so as to break the seal of the self-sealing valve 10, so as to either regulate or substantially alter an amount of fluid within the inflatable device 12. In particular, a shaded portion 53 of the actuator arm 52 illustrates the valve arm in a first position which is used to substantially bias open the self-sealing valve 10. In addition, a darkened portion of the actuator arm 52 illustrates the valve in a second position, in which it has been allowed to close by the solenoid 50 and the actuator arm 52, such that the actuator arm no longer is biasing the diaphragm 40 or the diaphragm support 42 substantially away from the valve seat. Accordingly, it is to be appreciated that the first position of the actuator arm of the solenoid 50 can be used to substantially open the self-sealing valve, and that the second position of the actuator arm can be used to allow the valve to operate under its normal condition, so as to open under the influence of fluid provided by fluid moving device 110, and so as to close upon

sufficient fluid within the inflatable device 12. It is to be appreciated that the first position of the actuator arm can be configured so as to substantially open the valve for a longer duration so as to substantially deflate the inflatable device 12, or it can be configured to substantially open the valve for a short duration so as to regulate an amount of fluid within the inflatable device 12. In other words, to provide for controlled fluid pressure within the inflatable device, for example, to adjust a comfort level of the inflatable device.

Referring to FIG. 2, there is illustrated in cross section 10 another embodiment of a self-sealing valve in combination with an electromechanical device of the invention. It is to be appreciated that like reference numbers in FIG. 2 to FIG. 1, correspond to like parts and that for the sake of brevity the description of each part will not herein be repeated. In the 15 embodiment of FIG. 2, the combination of the self-sealing valve and electromechanical device of the invention are part of a fluid control device 100 that inflates, deflates and regulates an amount of fluid within an inflatable device. The fluid control device 100 includes a pump 110 and multiple self- 20 sealing valves 10, in combination with respective electromechanical devices 50. In the embodiment of FIG. 2, each combination of a self-sealing valve and an electromechanical device operates independently, however it is to be appreciated that a plurality of self-sealing valves may operate in combi- 25 nation with one or more electromechanical devices such as illustrated in FIGS. 3A-3B, and that such combinations may also operate independently or dependently.

As is illustrated in FIG. 2, in one illustrative condition, the lower valve is biased to a substantially opened position by 30 actuator arm 52 and solenoid 50, so as to at least partially exhaust air from a fluid impermeable bladder coupled to the lower valve. In addition, as is illustrated in FIG. 2, in another illustrative condition, the upper valve 10 can be opened under the influence of fluid provided by the pump 110, while the 35 actuator arm is in a position allowing the valve 110 to operate in a normal manner (illustrated as opening up under the influence of fluid from the fluid moving device 110), so as to inflate the fluid impermeable bladder coupled to the upper valve. It is to be appreciated that in the illustrated condition of 40 the upper valve, operating in a normal manner (not under influence from the electromechanical device) that the valve 110 can also close to self-seal the fluid impermeable bladder, in the absence of fluid form the fluid moving device, and with sufficient fluid in the impermeable bladder. It is also to be 45 appreciated that either self-sealing valve and electromechanical device combinations can operate in either manner, and that the conditions of the valves illustrated in FIG. 2 are for illustration purposes only. With this arrangement, the fluid control device 100 is used to inflate, deflate, and adjust an 50 amount of fluid within two fluid impermeable bladders, each coupled to a respective one of the upper and lower self-sealing valves. Accordingly, the embodiment of the invention as illustrated in FIG. 2 is useful for inflatable devices with at least 2 bladders such as, for example, a double inflatable mattress 55 with separate comfort zones for two different users, each zone having a separate bladder.

The embodiment of FIG. 2 may also comprise a third electromechanical device 60, which biases a control arm 105 to one of two positions to either allow air to be provided to or 60 exhausted from a fluid impermeable bladder coupled to the upper valve, or the fluid impermeable bladder coupled to the lower valve. In particular, third electromechanical device 60 biases rotating arm 105 so as to seal off one of the self-sealing valves from the fluid moving device, so that fluid can only be 65 provided to or exhausted from one fluid impermeable bladder at a time. For example, the upper fluid impermeable bladder

8

may be filled with fluid from the fluid moving device 110, wherein the self-sealing valve opens up under pressure of fluid provided by the fluid moving device 110. With this condition, the rotating arm 105 is rotated under influence from the electromechanical device to a position to seal of the lower self-sealing valve from the fluid moving device, such that fluid is prevented from being provided to the fluid impermeable bladder coupled to the lower self-sealing valve. It is to be appreciated that with this arrangement, the rotating arm can also be rotated to a second position to seal off the upper self-sealing valve from the fluid moving device, such that fluid is prevented from being provided to the fluid impermeable bladder coupled to the upper self-sealing valve. In the second position of the rotating arm, fluid can be exhausted from or provided to the impermeable bladder coupled to the lower self-sealing valve. In other words, in one embodiment of the fluid controller device 100 of FIG. 2, only one of the two fluid impermeable bladders may be inflated or exhausted at any one time. It is thus to be appreciated that with the arrangement of FIG. 2, one fluid impermeable bladder can not be inflated at the same time that the second bladder is to be deflated.

Referring now to FIG. 3A and FIG. 3B, there is illustrated in cross section another embodiment of the invention having at least two different operating positions. In particular, although the electromechanical device of the invention can comprise a solenoid as discussed above, it may also comprise a motor 62 that can be used to bias the actuator arm 64. It is to be appreciated that like reference numbers in FIG. 3A and FIG. 3B to that of FIGS. 1 and 2, represent like parts, and the description of each part is not necessarily repeated for the sake of brevity. In the embodiment of FIG. 3A and FIG. 3B, the motor and actuator arm have at least two positions that can each be used to operate on a respective self-sealing valve 10. In particular, as is illustrated in FIG. 3A, in a first position the motor biases the actuator arm 64 so as to substantially move the flexible diaphragm of the lower self-sealing valve away from the valve seat 28 so as to substantially open the fluid pathway, to at least partially exhaust air from an inflatable bladder coupled to the lower self-sealing valve. In addition, the motor can move the actuator arm to a second position so as to allow the lower valve to operate under normal selfsealing conditions, such as to self seal with sufficient fluid within the fluid impermeable bladder coupled to the lower self-sealing valve, and so as to open under sufficient pressure of fluid provided by the fluid moving device 110. In one embodiment, in the second position of the motor 62, the actuator arm is configured to bias the upper valve to a substantially open position (with the flexible diaphragm at least partially moved away from the valve seat 28), so as to at least partially exhaust air from an inflatable bladder coupled to the upper self-sealing valve. Alternatively, in another embodiment of the invention, the second position of the motor and actuator arm may be a position in which neither self-sealing valve is biased open by the actuator arm, as is illustrated in FIG. 3B. In this embodiment, the motor may also comprise a third position, in which the motor can bias the actuator arm to a position so as to substantially open the upper self-sealing valve, so as to at least partially exhaust air from a fluid impermeable bladder coupled to the upper self-sealing valve.

In one embodiment, the motor can also be used to rotate a rotating arm 105 so as to seal off one of the self-sealing valves from the fluid moving device, so that fluid can only be provided to one fluidly impermeable bladder at a time. For example, as illustrated in FIG. 3A, the upper fluid impermeable bladder may be filled by fluid from the fluid moving device 110, wherein the self-sealing valve opens up under

pressure of fluid provided by the fluid moving device 110. For this position, the rotating arm 105 is rotated under influence from the motor to a position to seal off the lower self-sealing valve from the fluid moving device, such that fluid is prevented from being provided to the fluid impermeable bladder coupled to the lower self-sealing valve. It is to be appreciated that with this arrangement, the rotating arm can also be rotated to a second position to seal off the upper self-sealing valve from the fluid moving device, such that fluid is prevented from being provided to the fluid impermeable bladder coupled to the upper self-sealing valve. In this second position of the rotating arm, fluid can be exhausted from or provided to the fluid impermeable bladder coupled to the lower self-sealing valve.

With any of the embodiments discussed above, a method of 15 inflating and deflating at least one fluid impermeable bladder and regulating an amount of fluid within the at least one fluid impermeable is provided by the invention. In particular, in one embodiment, the self-sealing valve can be biased open under the influence of fluid provided by the fluid moving 20 device so as to inflate the inflatable device. Upon sufficient fluid pressure within the inflatable device, the self-sealing valve is biased to the closed position by the fluid pressure within the inflatable device. An electromechanical device is used to regulate an amount of fluid within the inflatable 25 device or to substantially deflate an amount of fluid within the inflatable device. In addition, for embodiments of inflatable devices comprising at least two bladders, the above acts can be supplemented by providing fluid through a second electromechanical device and self-sealing valve to a second fluid 30 impermeable bladder, and the second electromechanical device and self-sealing valve can be used so as to either regulate an amount of fluid within the inflatable device or to substantially alter the amount of fluid from within the second fluid impermeable bladder.

FIGS. 4A-4C illustrate another embodiment of an assembly of an electromechanical device in combination with a self-sealing valve of the invention. This embodiment comprises a self-sealing valve assembly 80, such as, as has been described infra. The self-sealing valve assembly comprises a 40 flexible diaphragm 40 and a diaphragm support 42 that positions the diaphragm within an opening through which fluid can be supplied to or exhausted from an inside 16 of fluid impermeable bladder 14. The self-sealing valve assembly also includes a projecting arm 82 from the diaphragm support 45 42, that is configured to interact with a portion 86 of an actuator arm 84. The assembly also comprises a cover 81 having a surface 83 that also interacts with the portion 86 of the actuator arm 84. The actuator arm 84 and portion 86 are configured to bias the cover 81 upward so as to open the cover, 50 and are also configured to bias the projecting arm 80 so as to push the diaphragm support 42 and diaphragm 40 at least partially away from valve seat 28, as illustrated in FIG. 4B, when a deflate lever **88** is depressed, for example, by a finger 90 of a user. The assembly also comprises an inflate lever 92, 55 which can also be depressed by the finger 90 of the user so as to urge the actuator arm into contact with the surface 83 of the cover 81 so as to open the cover, as illustrated in FIG. 4C. The inflate lever is also configured, when depressed, to contact and bias a power switch 94 to energize a fluid moving device 60 to supply fluid from the fluid moving device to the selfsealing valve 80, as is also illustrated in FIG. 4C.

In the illustrated embodiment of FIGS. 4A-4C, the actuator arm also comprises spring assembly 96, which maintains the actuator arm 84 in an at rest position, which is disengaged 65 from the cover 81 and the self-sealing valve 80. By depressing the deflate lever 88, the actuator arm is urged into contact with

10

the surface 83 of the cover 81 and the projecting arm 82 of the self-sealing valve assembly, so as to bias open the cover and to bias open the self-sealing valve 80 for the purpose of deflating the inflatable device, as illustrated in FIG. 4B. By depressing the inflate level 92, the actuator arm 84 is urged into contact with the surface 83 of the cover 81 so as to bias open the cover to inflate the inflatable device as illustrated in FIG. 4C. As illustrated in FIG. 4C, the inflate lever both turns on the fluid moving device to provide fluid to the inflatable device and also biases open the cover for the purpose of providing fluid to the inflatable device.

In this embodiment, the self-sealing valve is configured to open under sufficient fluid pressure from the fluid moving device, when the cover is biased open by depressing the inflate lever, in the absence of any biasing open of the self-sealing valve from the actuator arm 84. The self-sealing valve is also configured to close in the absence of such fluid pressure from the fluid moving device and in the absence of any bias from the actuator device, with sufficient fluid pressure within the fluid impermeable bladder 16, to a closed position. The self-sealing valve is further configured to at least partially open to allow fluid to escape through the self-sealing valve from the inflatable device to regulate an amount of fluid within the inflatable device, when the cover and the self-sealing valve is biased open by the actuator arm, by depressing the inflate lever.

It should be appreciated that although FIGS. 4A-4C illustrate an embodiment of a actuator device and valve assembly comprising a single self-sealing valve, there may be provided a plurality of such self-sealing valves, for example along a row within a common housing 96, all coupled to the fluid moving device, and all provided with a respective deflate lever 88, inflate lever 92, and spring assembly 96 comprising 35 actuator arm 84, so as to be able to respectively bias open and close each self-sealing valve assembly for the purpose of inflating and deflating a plurality of fluid impermeable bladders within an inflatable device. In other words, the assembly of FIGS. 4A-4C can be used to fill, deflate and control a fluid level within an inflatable device that comprises a plurality of fluid impermeable bladders, each having a respectively assembly as illustrated in FIGS. 4A-4C, so as to be able to control the fluid pressure within each fluid impermeable bladder independently, and with the added advantage of only having to use a single fluid moving device. It is to be appreciated that the fluid moving device may be located remotely from the self-sealing valve and the electromechanical assem-

Having thus described several aspects of at least one embodiment of this invention, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. For example, it is to be appreciated that for any of the above described embodiments, the fluid moving device can be provided remotely from, for example, the self-sealing valves, and also that the controls to bias on and off the fluid moving device and any of the electromechanical devices can be located remotely from the fluid moving device and the electromechanical devices. In addition, it is to be appreciated that there may be some embodiments or applications where the electromechanical device may also be used to open the self-sealing valve of any of the embodiments described infra for the purpose of aiding the inflating of the inflatable device such as, for example, where the self-sealing valve is not opened appreciably by the fluid moving device upon inflation. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of

the invention. Accordingly, the foregoing description and drawings are by way of example only.

What is claimed is:

- 1. A fluid controller, comprising:
- a plurality of self-sealing valves;
- a housing common to each of the plurality of self-sealing valves having a wall defining a first opening through which fluid is provided and also defining a first valve seat and defining a second opening through which fluid is provided and also defining a second valve seat;
- a first self-sealing valve of the plurality of self-sealing valves comprising a first flexible diaphragm that is positioned adjacent the first opening and the first valve seat, that is configured to move at least a portion of the first flexible diaphragm at least partially away from the first valve seat under bias of fluid provided on a first side of the first flexible diaphragm, and that is configured to close the first self-sealing valve and maintain a self-seal with the first flexible diaphragm against the first valve seat in the absence of a bias of fluid provided on the first side of the first flexible diaphragm;
- a second self-sealing vale of the plurality of self-sealing valves comprising a second flexible diaphragm that is positioned adjacent the second opening and the second valve seat, that is configured to move at least a portion of 25 the second flexible diaphragm at least partially away from the second valve seat under bias of fluid provided on a first side of the second flexible diaphragm, and that is configured to close the second self-sealing valve and maintain a self-seal with the second flexible diaphragm 30 against the second valve seat in the absence of bias of a fluid provided on the first side of the second flexible diaphragm; and
- an electromechanical device comprising an actuator arm, the actuator arm having a first position in which the actuator arm acts on the first flexible diaphragm to urge the at least the portion of the first flexible diaphragm at least partially away from the first valve seat so as to open the first self-sealing valve, having a second position in which the actuator arm acts on the second flexible diaphragm to urge the at least, the portion of the second flexible diaphragm at least partially away from the second valve seat so as to open the second self-sealing valve, and having a third position in which the actuator arm does not act upon either the first flexible diaphragm 45 or the second flexible diaphragm.
- 2. The fluid controller of claim 1, wherein the electromechanical device is positioned facing the first side of the flexible diaphragm so as to act on the first side of the flexible diaphragm.
- 3. The fluid controller of claim 1, wherein the electromechanical device comprises a solenoid.
- 4. The fluid controller of claim 1, further comprising a fluid moving device positioned so as to provide fluid to the first side of the first flexible diaphragm and the second flexible diaphragm.
- 5. The fluid controller of claim 1, further comprising a means to seal off one of the first self-sealing valve and the second self-sealing valve.
- **6**. The fluid controller of claim **1**, wherein a fluid imper- 60 meable bladder is coupled to the fluid controller.
- 7. The fluid controller of claim 6, wherein the fluid controller and the fluid impermeable bladder are integrated together into an inflatable device.
- **8**. A method employing a fluid controller to regulate an 65 amount of fluid within an inflatable device, the fluid controller comprising a plurality of self-sealing valves, a housing

12

common to each of the plurality of self-sealing valves and having an opening for each self-sealing valve, and an electromechanical device, each of the self-sealing valves comprising a flexible diaphragm, the method comprising:

- biasing open at least one of a first self-sealing valve and a second self-scaling valve of the plurality of the self-sealing valves with sufficient fluid pressure provided from a fluid moving device to a first side of the flexible diaphragm of the first self-sealing valve and the second self-sealing valve, so as to provide the fluid through the opening in at least one of the first self-sealing valve and the second self-sealing valve to the inflatable device;
- biasing each of the first self-sealing valve and the second self-sealing valve to a closed position in the absence of fluid from the fluid moving device;
- biasing with the electromechanical device, the first selfsealing valve to at least a partially opened position so as to regulate an amount of fluid within the inflatable device; and
- biasing with the electromechanical device, the second selfsealing valve to at least a partially opened position so as to regulate an amount of fluid within the inflatable device.
- positioned adjacent the second opening and the second valve seat, that is configured to move at least a portion of the second flexible diaphragm at least partially away from the second valve seat under bias of fluid provided on a first side of the second flexible diaphragm, and that
 - 10. The method of claim 8, wherein the act of biasing at least one of the self-sealing valves at least partially open with the electromechanical device comprises biasing the at least one flexible diaphragm at least partially open with a solenoid.
 - 11. The method of claim 8, wherein the act of biasing at least one of the self-sealing valves at least partially open with the electromechanical device comprises allowing fluid to flow at least partially out of the inflatable device through the at least one self-sealing valve.
 - 12. The method of claim 8, wherein the act of biasing open at least one of the first self-sealing valve and the second self-sealing valve so as to provide the fluid to the inflatable device comprises not biasing open the self-sealing valve with the electromechanical device.
 - 13. The method of claim 8, further comprising an act of biasing open at least one of the first self-sealing valve and the second self-sealing valve to provide the fluid to the inflatable device comprises biasing open the self-sealing valve the electromechanical device.
 - 14. The method of claim 8, wherein the act of biasing open at least one of the first self-sealing valve and the second self-sealing valve so as to provide the fluid to the inflatable device comprises biasing on the fluid moving device to provide the fluid.
 - 15. The method of claim 8, further comprising an act of sealing one of the first self-sealing valve and the second self-sealing valve from fluid pressure provided from the fluid moving device.
 - **16**. An inflatable device that includes at least one inflatable bladder, the inflatable device comprising:
 - a housing having a wall defining an opening through which fluid is provided to the inflatable bladder and also defining a first and a second valve seat;
 - a first self-sealing valve comprising a first self-sealing diaphragm positioned adjacent to the first valve seat, the first self-sealing diaphragm configured to move at least a portion of the first self-sealing diaphragm at least partially away from the first valve seat under bias of a fluid provided on a first (inlet) side of the first self-scaling

diaphragm, and that is configured to close the first selfsealing diaphragm against the first valve seat in the absence of the bias of fluid on the first (inlet) side of the first self-sealing diaphragm;

a second self-sealing valve comprising a second self-sealing diaphragm positioned adjacent to the second valve seat, the second self-sealing diaphragm configured to move at least a portion of the second self-sealing diaphragm at least partially away from the second valve seat under bias of a fluid provided on a first (inlet) side of the second self-sealing diaphragm, and that is configured to close the second self-sealing diaphragm against the second valve seat in the absence of the bias of fluid on the first (inlet) side of the second self-sealing diaphragm; and

an electromechanical device comprising an actuator arm, the actuator arm having a first position in which the actuator arm acts on the first self-scaling diaphragm to urge the at least the portion of the first self-sealing diaphragm at least partially away from the first valve seat, a second position in which the actuator arm acts on the second self-sealing diaphragm to urge the at least the portion of the second self-sealing diaphragm at least partially away from the second valve seat, and a third position in which the actuator arm does not, act upon either the first or the second self-sealing diaphragm, the electromechanical device being configured in the absence of the bias of fluid from a fluid moving device on the first (inlet) side of either the first or the second self-sealing diaphragm to open one of the first self-

14

sealing valve and the second self-sealing valve so as to regulate an amount of pressure within the at least one inflatable bladder, and the electromechanical device being configured in the presence of the bias of fluid on the first (inlet) side of either the first or the second self-sealing diaphragm to position the actuator arm in the third position in which the actuator arm does not act upon the either the first or the second self-sealing diaphragm; and

the fluid moving being fluidly coupled to the first (inlet) side of the first and the second self-sealing valve so as to provide the fluid to the first (inlet) side of the corresponding self-sealing diaphragm;

wherein the housing comprises the first self-sealing valve, the second self-sealing valve, the electromechanical device and the fluid moving device and is located, at least in part, within a profile of the inflatable bladder.

17. The device of claim 16, wherein the electromechanical device is configured to bias the actuator arm to contact the at least one the first self-sealing diaphragm and the second self-sealing diaphragm, when in the first position and the second position, so as to bias open the corresponding self-sealing valve.

18. The device of claim 16, wherein the electromechanical device comprises a solenoid.

19. The device of claim 16, wherein the fluid moving device is positioned so as to provide the fluid bias on the first side of the at least one diaphragm.

* * * * *